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Figure 8. Spatial and temporal expression patterning of dysregulated genes from neurons in vivo.

A–C Heatmaps show localization of dysregulated gene expression from neurons with mutations in DISC1 in the (A) developing cortex (CP, SP) and progenitor zones
(SVZ) of the prenatal human brain, (B) temporal expression predominates in the early and late weeks of postconception brain during development, and (C) spatial
gene expression in the adult human brain localizes to the subcortical nuclei (CxN). CP, Cortical plate; HTS, Hindbrain transient structures; IZ, Intermediate zone;
Mos, Months; MZ, Marginal zone; SG, Subpial granular zone; SP, Subplate zone; SS, Sulci and spaces; SVZ, Subventricular zone.
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diseases modeled by iPSCs and a platform to track the relevant,

novel CNS cellular phenotypes to improve upon existing phenotypic

assays for drug development and to better understand human

disease pathogenesis.

The present analysis includes work that fulfilled stringent inclu-

sion criteria and highlights the need for a set of criteria of repro-

ducible, minimal information for reporting iPS cell models, given

the experimental noise imposed by lack of standardized protocols in

the field (Brennand et al, 2015).

The need for minimal information about iPSC experiments
(MiPSCE) in neurology

One hurdle for modeling neurological diseases with iPSCs is the

use of the molecular and cellular phenotypes obtained from these

cells as reproducible and scalable metrics to discover pathways

in the dish for therapeutic purpose. Our analysis has proven that

there are phenotypic differences between patient-derived CNS cell

types compared to controls, which can be reproducible, espe-

cially the most frequently assessed. From the 93 primary studies

generating iPSCs included in our analysis, 35% were conducted

with three or more patient cell lines, 42% with two lines, and

23% were done with only one line. Likewise, the number of cell

lines derived from each patient varied markedly as well, all

supporting the need for minimal standards in the reporting of

iPSCs models.

To further develop the phenogenetics of iPSC-derived cell types,

experiments must test the sensitivity and specificity of cellular

phenotypes for a particular cell and disease to assess the minimal

number of patients and cell lines needed to reach definitive conclu-

sions. These efforts cannot be realistically undertaken by a single

laboratory and may need the efforts of consortia and scientific asso-

ciations in stem cell research. We do anticipate though, that as

several iPS cell banks continue to grow, laboratories will have

increased access to cell lines, enabling the majority of future experi-

ments to make use of more than one diseased and control line to

increase the robustness of their findings. In our analysis, we

observed a lack of uniformity in not only the methodology utilized,

such as differences in cell culture conditions, but also in the report-

ing of iPSC differentiation experiments, including the documentation

of fate, yield, and purity of the derived cell types. The future inclu-

sion of such data from differentiated cultures may help address the

need for a standard set of criteria to define a given cell type, perhaps

with thresholds of purity defined by marked expression and physio-

logical measures, which would increase the reliability of comparing

reported phenotypes, for it is unclear whether these differences can

affect the phenotypes and gene expression of the derived cells

(Fig 1). As such, the establishment of standards will improve

reproducibility and standardize methodologies among different

laboratories.

We extracted seven categories that comprise the minimal infor-

mation we found useful throughout curation and suggest their adap-

tation for future iPSC studies (Fig 1). Based on our analysis, we

have established this minimal information that should be included

in all future studies, which also integrates prior efforts to homoge-

nize iPSC field practices (Luong et al, 2011) (Materials and Methods

and Appendix Table S12). In addition to our suggested MiPSCE, we

have proposed that future work in the iPSC field will leverage

big-data techniques in a community wide effort to establish reliable

and comparable datasets, allowing for researchers to draw conclu-

sions of the phenogenetic nature from multiple iPSC lines (Del Sol

et al, 2017).

In general, improved measures of phenotypic assays and stan-

dardizing culture conditions in iPSC experiments would enhance

phenotype analyses of human cells, a strategy that has been

successful in the phenogenetics of Caenorhabditis elegans and

Arabidopsis thaliana (Kuromori et al, 2006; Atwell et al, 2010).

In the future, by accumulating more phenotypes in mutated cells

from human neurological diseases, we can build more complete

phenogenetic maps. This is crucial as our current early pheno-

genetic map contains an unavoidable, inherent bias toward

diseases and mutations that were more frequently investigated in

the literature. Furthermore, there may be a bias in which pheno-

types were probed for due to assays that were better adapted for

use in iPSCs or phenotypes that have previously been reported

in animal, postmortem, and primary cell culture studies (Fig 1A).

This potential bias may have influenced our current set of over-

lapping phenotypes as investigators may have been more

inclined to test for phenotypes based on prior work, thereby

diminishing the potential for phenotypes to link genes from dif-

ferent diseases. Therefore, expanding which phenotypes are

tested for, outside the scope of past studies, will further enrich

phenogenetic analyses.

Utility and limitation of the atlas and translational challenges of
the iPSC phenotype field

Our phenogenetic map is limited to neurological diseases caused by

somatic mutations; thus, it should be considered an early effort that

will be enriched and refined by additional work of the field as

evidenced by the evolution of other mapping efforts (Kuromori

et al, 2006; Atwell et al, 2010), such as the inclusion of complex

genetic disorders caused by copy number variants (CNVs), single

nucleotide polymorphisms (SNPs), and other low-penetrance muta-

tions. It will be very difficult to anticipate if in vitro patient-derived

models will ever replace other models of neurological diseases;

however, human iPS modeling could have practical translational

utility. For instance, the identification of overlapping phenotypes

among diseases that are thought to have distinct pathologies would

reveal mutually, disrupted cellular processes that may be responsive

to similar therapies, indicating that a single phenotype can be used

as a potential biomarker, an “inter-disease biomarker,” for diverse

in vitro models of neurological diseases. Furthermore, the elucida-

tion of concordant phenotypes within a specific disease would allow

for the anticipation of disease phenotypes in a patient when the

specific genetic mutation is unknown. These concordant phenotypes

may be used to create phenotypic assays to detect a particular

disease in vitro, as an “intra-disease biomarker”. For example, the

increase in Ab observed in all of the mutations linked to Alzheimer’s

disease can also be seen in late onset Alzheimer’s disease (LOAD)

and while this finding may not be surprising, it does, however,

demonstrate that concordant iPSC phenotypes are robust tools for

studying disease. Comparably, an increase in a-synuclein, reported
in the majority of the mutations linked to Parkinson’s disease, could

be utilized as a predictive phenotype signature in the sporadic

disease-induced cells.

EMBO Molecular Medicine ª 2017 The Authors

EMBO Molecular Medicine Phenogenetic relationships of iPS cell models Ethan W Hollingsworth et al

14

Published online: October 19, 2017 



One critical question in iPSC modeling is if it is more relevant to

replicate findings to increase the sensitivity or specificity of in vitro

phenotypes as biomarkers or to find novel phenotypes with

unknown specificity. Although costly, confirming the presence of

disease-specific phenotypes in multiple cell lines with distinct

genomes will reduce the contributions of experimental noise and

limit the effect of spurious variation expressed by a single line. It is

impractical for a single group to undertake such a prospective analy-

sis, rather a concerted effort through a consortium may have the

necessary resources. Additionally, the continued practice of our

retrospective assessment of phenogenetic “level of evidence,”

defined as the number of cell lines with different mutations in a

gene expressing a particular phenotype, may also help in validating

disease-specific phenotypes (Appendix Table S10). Moreover, inves-

tigation of the relationships between sporadic and existing muta-

tion-induced phenotypes can help to reveal important mechanistic

information about sporadic diseases, especially when the intrinsic

neuronal mutation has yet to be established, like in multiple sclero-

sis (Douvaras et al, 2014; Orack et al, 2015), or in diseases where

CNVs provide a modest risk factor for susceptibility, like autism, or

mental disorders, like schizophrenia (Brennand et al, 2011; Wen

et al, 2014; Srikanth et al, 2015).

Our analysis and taxonomy serve as a potential resource for

tracking the most relevant cellular and molecular phenotypes in

modeling neurological diseases using iPSCs and could inform future

strategies to regulate pathways altered at the cellular level in vivo

through pharmacological targeting of disease-associated traits. More

importantly, a catalog of the ever-increasing number of mutant

phenotypes into a new taxonomy of iPSC-derived phenotypes will

aid future large-scale phenotype analysis in neurological disorders

by correlating multilayer -omics information from the clinical, radio-

logical, cellular, and molecular data of patients. Our analysis will

Figure 9. Novel principles of phenogenetic correlations of iPSC-derived cellular phenotypes derived from patients included in our meta-analysis of iPSC
models of neurological disorders.
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also be useful as we build novel algorithms to determine the robust-

ness of iPSC results, including factors such as power, validation,

and replication by independent assays, which over time can reject

spurious phenotypes from the less optimally designed experiments.

The future of using patient-derived neural cells should aim to

develop and study the iPSC phenotypes that are relevant for human

neurological diseases. Therefore, the further refinement and replica-

tion of induced neural disease phenotypes are critical for modeling

the spectrum of neurological diseases.

Conclusions

In summary, we examined the current iPSC field practices of

modeling neurological diseases and carried out a comprehensive

analysis of the phenogenetic relationships of patient-derived cellu-

lar models of neurological diseases and catalogued them in the

iPhemap database. Although the results obtained in our analysis

are retrospective, our findings illustrate the presence of diverse

practices within the field. We posit that a retrospective analysis,

like a mid-term examination, now 10 years after the discovery of

iPSCs, is needed to improve the reproducibility of the field, espe-

cially as we are now investigating the role of genetic variation, such

as SNPs, in genomewide association studies (GWAS) (Sweet, 2017)

of in vitro iPSC phenotypes using multiple patients. Importantly,

we identify areas of opportunity to improve the reproducibility of

experimental results and to increase the translational utility of

models. Finally, we propose, for the first time, a set of principles

for the phenogenetic analysis of in vitro models of human diseases

with iPSCs (Fig 9), which may be expanded and revised with future

work (Movie EV1).

Materials and Methods

Methods summary

We examined a total of 93 iPSC studies in modeling neurological

diseases including neurodegenerative and neurodevelopmental

disorders that fulfilled the inclusion and exclusion criteria. The

inclusion criteria were as follows: (i) Studies that used iPSCs

derived from human patients to investigate cellular phenotypes

caused by neurological diseases. (ii) Studies that specify disease

and gene mutation of all iPSCs and any additional differentiated

cells under investigation. (iii) Studies that specify type of control

cells lines utilized. (iv) Studies that describe phenotypic differences

in comparison with their respective control cells. The exclusion

criteria were as follows: (i) Studies that used non-iPSC-derived cells

as controls, such as embryonic stem cells. (ii) Studies that intro-

duced disease mutations into otherwise healthy iPSCs. (iii) Studies

that used iPSC-derived cells with low-penetrance mutations, like

CNVs or SNPs. (iv) Studies that only reported gene expression pro-

files, including microRNAs. (v) Studies that modeled iPSC-derived

organoids. We first analyzed the experimental methodologies of

these studies and then documented all of the phenotypes from

diseased iPSC-derived cells, which we organized into nine distinct

phenotypic categories. From this, we generated a Circos plot and

ideogram to illustrate the phenotype-category relationships. More-

over, to further explore the associations between our 663

phenotypes and examined genes, we generated a phenogenetic map

and conducted statistical analyses, to discover new phenogenetic

associations. In addition to the cellular phenotypes, we also

conducted analysis of microarray data on eleven of the studies to

elucidate molecular phenotypes, associated with transcriptional

dysregulation. Following our meta-analysis, we developed an online

web tool, titled iPhemap, which is a curated repository of iPSC

disease phenotypes and allows users access and to submit potential

data to our phenogenetic database.

Search strategy and meta-analysis

We began our search through the published iPSC articles by utiliz-

ing PubMed and specific pertinent keywords. Our initial search

employed the following keywords: neurodegenerative, disease,

human iPSCs, and iPSCs. This resulted in a large return of articles,

n = 36. Next, we conducted a narrower search, which consequently

expanded our candidate article number to 52. This second search

introduced common neurodegenerative diseases and their gene

mutations (i.e., Parkinson’s and LRRK2) with the words iPSC and

human iPSC to better address the desired article content by our

search terms.

Through our close reading of these reports, we discovered 25

additional articles for consideration. We then established a list of

quality control criteria for our meta-analysis, including: (i) Articles

that used iPSCs derived from human patients to investigate cellular

phenotypes caused by neurological diseases. (ii) The disease and

gene mutation of all iPSCs and any additional differentiated cells

under investigation are clearly stated in the article. (iii) Diseased

iPSCs and/or differentiated cells under investigation are compared

against control cells lines of the appropriate cell type. (iv) Diseased

cells under investigation exhibited phenotypic differences in

comparison with their respective control cells. In addition to the

inclusion criteria, we formulated specific exclusion criteria: (i) Arti-

cles that used non-iPSC-derived cells as controls, such as embryonic

stem cells. (ii) Articles that introduced disease mutations into other-

wise healthy iPSCs. (iii) Articles that used iPSC-derived cells with

low-penetrance mutations, like CNVs or SNPs. (iv) Articles that only

reported gene expression profiles, including microRNAs. (v) Articles

that modeled iPSC-derived organoids. To expand our analysis across

the entire field of neurological disease and update our bevy of

papers with those recently published, we performed a final search,

which returned 36 additional articles, thus increasing our total to

113 papers.

However, upon further examination, we omitted twenty candi-

dates from our original compilation of 113 as they failed to meet our

requirements. We then analyzed these 93 articles to document

disease-specific phenotypes in iPSC-derived cells that were different

in comparison with their control lines. Our analysis included studies

with 32.2% of manuscripts being published in journals of impact

factor (IF) of 5–10, 17.2% in 10–20 IF, and 26.9% of more than 20

IF. To document the pertinent information from our meta-analysis,

we recorded all observed phenotypes, with the same lexicon anno-

tated in the papers, gene alterations, and corresponding disease

names from the accepted papers. Moreover, to organize the large

number of phenotypes, we established nine separate phenotypic

categories. These categories served to highlight phenotypic patterns

throughout diseases. Upon completion of this initial analysis and
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organization, we curated the 93 accepted articles three different

times by three separate investigators to ensure accurate phenotypic

extraction had been conducted.

Minimal information categories

Despite our inclusion and exclusion criteria, the examined 93 arti-

cles contained heterogeneity within their provided methods. Even

with comprehensive descriptions and extensive information

provided, discrepancies across our group of articles remained.

Within the articles, seven categories consistently arose and make up

the minimal information which we propose should be provided in

all future studies (Appendix Table S12). The seven categories and

their prominence are as follows:

Clinical information of patients and primary fibroblast isolation (63.4%)

The isolation of primary patient fibroblasts from diseased patients

is necessary for all studies in the iPSC field. In accordance with

the papers, we analyzed general clinical information of patients

from which the fibroblasts (or other cell type that needs to be

specified) are taken should be provided, including information

such as age, gender, disease under investigation, and age when

disease appeared, if known. If fibroblasts, or iPSCs, are received

from a third-party cell repository, the name of the distributor

from which the cells were received as well as the line and or

patient number should be provided in the article as well for refer-

ence.

Generation of iPSCs (87.1%)

With the existence of several different ways to drive cells toward

pluripotency, the procedure by which each iPS cell was induced

should be provided. This includes any manipulation of the primary

cell line to reach the expression of pluripotent genes (i.e., retroviral

infection procedures and confirmation of gene expression), as well

as quality control methodologies for ensuring pluripotency has been

achieved, like teratoma formation.

Detailed cell culture/maintenance information (86.0%)

The environment and medium on which the iPSCs and any differen-

tiated cells were cultured and maintained on should be provided in

order to allow researchers access to all information pertaining to the

growth and upkeep of the cells being studied.

Detailed differentiation of iPSCs to any cell type (88.2%)

The process by which any cell type is derived from the existing

iPSCs should be stated clearly in each article to provide accurate

details as to how it was achieved. This should include the medium

the cells are placed on as well as the different culture conditions to

obtain mature cells, genes, or markers used by the researchers to

properly confirm the identity of the cells after they underwent dif-

ferentiation. The purity of the iPSC-derived progeny cultures,

defined by differentiation markers and other physiologic measures,

should also be included.

Validation of the mutation being studied (52.7%)

The gene mutation being studied by the researchers should be

already stated in the paper with the disease it pertains to in the

isolation of the fibroblast, but researchers should also provide the

means by which they confirmed the retention of the cells’ mutation

after iPSC generation and/or differentiation into other cell types

used for their study.

Gene delivery methods for cells if used (100% of papers utilizing

gene editing)

Papers should continue to provide all information regarding the

alteration in genes, including already mutated genes, to create a

secondary control line or any line that may be used as a comparison

with the diseased lines. This includes processes such as lentiviral

infections, episomal plasmids, TALEN mediation recombination,

and zinc finger nucleases.

Procedures of assays/specific phenotypic search methods (95.7%)

These procedures suggested would contain any type of test

performed on the iPSCs and differentiated cells in the study to

determine a phenotype to be specific to the disease or not specific

to the disease. This includes procedures used to measure protein

levels as well as procedures used to view disrupted cellular struc-

tures, these should include numbers of technical and biological

replicates.

Assumption of the phenogenetic model

After the curation and extraction of all relevant phenotypes, we

formulated a phenogenetic model. Our model posits that by using

highly curated phenotypic information from patient-derived cells

with somatic mutations, we can build a phenogenetic correlation for

each phenotype and genotype using the following relationship:

Phenotype (pi) is a function of genotype (gi) plus an environmental

component (ei).

pi ¼ fðgiÞ þ ei

i: individual patient-derived cell; gi: genotype of i; pi: Quantitative

phenotype of i cell: Cellular phenotypic trait (CPT); ei: Environmen-

tal contribution to pi.

The environmental component was excluded for two reasons:

(i) It is not possible with the data obtained to measure the influ-

ence of the culture environment. In addition, since the analysis is

not on individual cells, but a group of cells, this could equalize

the potential effects of the in vitro cell culture environment,

although we are aware that the culture environment could influ-

ence cellular phenotypes, given the myriad of protocols for iPS

cell generation reported. (ii) The assumption of our model, based

on the results from patient-derived cells with pathogenic muta-

tions, is that the cellular phenotypes obtained from these cells

may represent highly disruptive alterations in a cellular network,

as supported by the hundreds of abnormal phenotypes observed

that suggest some mutant phenotypes may supersede any varia-

tion induced by culture environment. Rather, these phenotypes

are caused by highly pathogenic and penetrant mutations with a

high degree of causality, more than what may be seen in iPSC

models derived from cells with smaller, discrete CNV or SNP,

which we excluded from our analysis. Therefore, the equation was

simplified to:

pi ¼ fðgiÞ
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i: individual patient-derived cell; gi: genotype of i; pi: Quantitative

phenotype of i cell: Cellular phenotypic trait (CPT).

Circos plot generation

To showcase the phenotype-category and phenotype-cell type rela-

tionship, we organized the related data in a Circos plot. We initially

gathered the proportional data for the number of phenotypes within

each of our nine categories along with the number of observed

phenotypes for each cellular type. From these proportions, we calcu-

lated numerical values, which were organized into a table

(Appendix Table S3). We then uploaded this table into the Circos

plot generator at circos.ca. http://mkweb.bcgsc.ca/tableviewer/visu

alize/ (Krzywinski et al, 2009). We predominantly employed the

default settings for this program except for several small changes:

small ribbons on top of large, color by column, order by column

first, normalization of ribbon sizes, and light gray transparency (3)

of Q1, Q2, and Q3. The software denoted the percentages and

proportions of each cell type to the respective phenotypic category,

which resulted in a more robust display of the data collected.

Ideogram generation

In order to display the location of each gene paired with its pheno-

typic categories, we sought to generate an ideogram. By identifying

the phenotypic categories observed for each gene, we utilized the

PhenoGram program: http://visualization.ritchielab.psu.edu/phe

nograms/plot to produce the desired ideogram (Wolfe et al, 2013).

We used the default settings of this program, which included the

use of the human genome and human cytobands.

Developmental stage and phenotype analysis

Using the phenotypes and genes recorded for each cell type in the

heatmap (Appendix Fig S1), the percent of reported phenotypes for

each patient-derived CNS was manually extracted. GraphPad Prism

Software was then utilized to generate the plots depicting phenotype

distributions of diseases by cell type, phenotype by gene, and gene

by phenotype (Fig 4). One-way analysis of variance (ANOVA) with

Bonferonni multiple comparisons tests (Fig 4B–F) and two-way

ANOVA with Tukey’s multiple comparisons test (Fig 4G) were

performed.

Network generation

From the data provided by our meta-analysis, we elucidated the

overlapping phenotypes, which we recorded in addition to pheno-

types only expressed by a single locus. To generate a network, we

formatted our relationship data into a table of source nodes (loci)

and their target nodes (observed phenotypes). We then uploaded

our processed data table to generate a network of nodes and edges

through the Cytoscape application. By doing this, we generated

edges when a locus expressed a phenotype, which indirectly

connected genes through an overlapping phenotype (Shannon et al,

2003). We then colored each phenotype node based upon its corre-

sponding phenotypic category.

We dictated the layout of our network by employing a force-

directed paradigm, which utilizes an algorithm to position nodes

based on a physics simulation of spring-like forces to generate an

aesthetically pleasing layout. From our overarching network, we

generated more nuanced networks to showcase only the overlap-

ping phenogenetic network and specific disease-phenogenetic

networks for genes associated with PD and AD.

Statistical analysis of network

To illustrate that our generated network followed a power-law

distribution, the node degree distribution graph was fitted with a

power-law curve by the Network Analyzer application of Cytoscape

and returned the equation y = 53.358x�1.160 for the fitted curve,

including the following statistical parameters: R2 = 0.717 and

r = 0.922. Furthermore, to statistically illustrate that all of the scat-

ter plots followed a power-law distribution; we converted the axes

of the all of the scatter plots to a logarithmic scale. Then, we

performed linear regression analyses to calculate the P-value of each

respective plot. As mentioned above, through our conversion of

these axes into a logarithmic scale, the significant P-values demon-

strated that our data follow a power-law distribution, which is typi-

cal of biological networks. To conduct all of the aforementioned

statistical tests, we utilized the R statistical computing software

(Assenov et al, 2008; RC Team, 2010).

Ontology methods

We conducted functional annotation analyses with respect to the

phenotypes involved in iPhemap. We calculated the phenotypic

enrichment for each gene utilizing a Fisher’s exact test, which

compared the number of phenotypic observations with those

directly observed by a particular gene, thus determining whether or

not a particular phenotypic annotation was more significant for a

gene. To account for the number of individual hypothesis tests

conducted, we performed a Benjamini–Hochberg multiple compar-

isons test for all P-values to control for false discovery rate. We then

termed the significant relationships established from our phenotype

to gene approach as phenotype ontology.

We further analyzed the genes involved in these significant

phenotypic relationships through the more common approach of

gene ontology. We entered these genes into a gene ontology data-

base to observe which functional annotations were statistically

significant. Furthermore, we compared the related gene ontology

functional annotation P-values with the P-values generated through

our aforementioned phenotype ontology. To denote phenotypic

ontologies that failed to share a corresponding functional annotation

from the genome ontology, we termed them as “Absent”. Thus,

these phenotypic ontologies can be considered novel for each gene.

Treemap and pathway generation

We also examined each of the accepted 93 articles in an attempt to

determine if microarray analysis or another type of transcriptome

profiling had been conducted, made publicly available as a GEO

dataset. If so, which was the case for 24 studies, we next determined

whether or not the microarray was conducted between the control

and mutated iPSC-derived cells. This resulted in 22 candidate arti-

cles, but to ensure reproducibility of results, we inspected their

protocols to determine if at least three samples of each control and
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patient line had been utilized, which resulted in 18 papers that ful-

filled this requirement. Furthermore, we required that the available

GEO datasets were compatible with the GEO2R web-based interface

or the GEOquery R package, thereby reducing our candidate pool to

13 papers. Last, we returned to the original text of each manuscript

to ensure that a similar analysis had not been previously performed,

which further diminished our pool to 10 studies. From these 10

studies, we processed the available molecular profile data through

the GEO to identify dysregulated genes.

However, for some studies the transcriptome analysis resulted in

a large number of unrelated differentially expressed genes. There-

fore, we established specific parameters for these results (P < 0.05

and FC > �2) to narrow the scope of this analysis, which dimin-

ished the pool of studies to nine. To determine the associated molec-

ular phenotypes and pathways, we entered the dysregulated genes

into IPA. We then instituted further parameters to highlight the most

pertinent molecular phenotypes and pathways, which include

considering the functional annotations and pathways from the most

significantly dysregulated gene network and establishing a statistical

parameter of P < 0.001. Additionally, we exported the tables of

functional annotation and pathway data provided by IPA to

construct the assortment of pathway figures and treemaps by using

the R treemap package (Tennekes, 2014) with the twenty most

significant molecular phenotypes according to P-value.

Heatmap generation

We also utilized the differentially expressed genes gleaned from

our prior analysis of studies with publicly available microarray

data that met our aforementioned criteria (see Treemap and path-

way generation) to determine if the temporal and spatial expres-

sion of dysregulated genes correlated with typical disease

pathology. To accomplish this, we made use of the Allen Brain

Atlas, specifically the Allen Human Brain Atlas (Hawrylycz et al,

2012) and the BrainSpan Atlas of the Developing Human Brain

(Miller et al, 2014). With the differentially expressed genes as

input, we searched each respective database with default parame-

ters to generate heatmap data for the temporal expression of

genes in the developmental transcriptome, and spatial expression

in the prenatal and adult human brain. Finally, we made use of

Morpheus, a web-based matrix visualization software, to perform

clustering analyses and generate heatmap images (https://softwa

re.broadinstitute.org/morpheus/).

Expanded View for this article is available online.
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