Calcineurin–NFAT signalling in myeloid leucocytes: new prospects and pitfalls in immunosuppressive therapy

Kamila Bendickova, Federico Tidu & Jan Fric*

Abstract

Myeloid leucocytes mediate host protection against infection and critically regulate inflammatory responses in body tissues. Pattern recognition receptor signalling is crucial for myeloid cell responses to pathogens, but growing evidence suggests an equally potent role for Calcineurin–NFAT signalling in control of myeloid cell function. All major subsets of myeloid leucocytes employ Calcineurin–NFAT signalling during immune responses to pathogens and/or tissue damage, but the influence this pathway exerts on pathogen clearance and host susceptibility to infection is not fully understood. Recent data from experimental models indicate that Calcineurin–NFAT signalling is essential for infection control, and calcineurin inhibitors used in transplantation medicine (including cyclosporine A and tacrolimus) are now being tested for efficacy in a diverse range of inflammatory conditions and autoimmune pathologies. Efforts to repurpose calcineurin inhibitor drugs for new therapeutic applications may yield rapid improvements in diverse human pathologies. Indeed, all five members of the NFAT family are known to be involved in regulation of immune responses. The Calcineurin–NFAT pathway was initially described in T cells, where NFAT acts as a master regulator of lymphocyte development, expression of interleukin (IL)-2, and controls major effector T-cell functions. Accordingly, drugs developed to inhibit Calcineurin–NFAT binding such as cyclosporine A and tacrolimus have proven highly effective at suppressing T-cell responses and preventing allograft rejection in transplantation medicine. While long regarded as a specific regulator of T-cell activity, NFAT signalling was later also identified in other cell types including B cells (Muller & Rao, 2010), and was reported to mediate embryogenic development of multiple tissues including the hematopoietic system (Muller et al., 2009). These data suggested that the influence of Calcineurin–NFAT on immunity was not restricted to T cells alone and that potent effects outside the adaptive immune response were likely.

Despite widespread use in clinical settings, the mechanisms by which Calcineurin–NFAT inhibitors suppress host immunity are not as specific as was initially thought. Various studies of cyclosporine A and tacrolimus treatment have revealed a surprising ability of these drugs to disrupt T-cell activation without impacting on Ca^{2+} flux (Metcalfe et al., 1994), and impair lymphocyte responses via effects on the mitogen-activated protein kinase (MAPK) pathway (Su et al., 1994; Matsuda et al., 1998) in NFAT-independent manner. Given that NFAT can also cooperate with transcription factors such as AP-1 and NF-kB to modify immune responses (Crabtree, 1989), it is perhaps not surprising that calcineurin inhibitors are now thought to mediate wide-ranging effects that can also impact on myeloid cell function. The key roles of Calcineurin–NFAT signalling in myeloid cell biology have recently been discussed elsewhere (Muller & Rao, 2010; Fric et al., 2012), and myeloid lineages not directly involved in host immunity to pathogens will not be discussed in detail here. The current review instead focuses on Calcineurin–NFAT control of myeloid immunity because the growing number of clinical studies is now seeking to manipulate this pathway for therapeutic benefit in diverse human pathologies. Indeed, all five members of the NFAT family are known to be involved in regulation of immune responses (Macian, 2005), and a major risk of immunosuppressive therapy in human patients is increased susceptibility to opportunistic infections. Consequently, investigators seeking to repurpose calcineurin inhibitor drugs for new disease indications must consider recent
reports that NFAT signalling exerts a critical influence on innate immune function, as well as emerging evidence that these therapies disrupt pathways known to be essential for myeloid cell defence against pathogens.

Pattern recognition receptors initiate Calcineurin–NFAT signalling in myeloid leucocytes

NFAT activation in dendritic cells (DCs) and macrophages was first observed upon cell activation through Dectin-1 (Goodridge et al, 2007), and was soon followed by reports that NFAT activation could also be triggered by other pattern recognition receptors (PRRs) including TLR4 and CD14 (Fig 1).

Initial mechanistic studies sought to understand how NFAT regulates gene expression in DCs exposed to various types of pathogen (Granucci et al, 2001, 2003). In particular, much early research focused on the role of the CD14-MD2-TLR4 pathway in modulating NFAT signalling (Zanoni et al, 2009). This critical signalling axis is now known to exert complex effects on DC function via a range of different mechanisms, including LPS binding to CD14, which can induce calcium flux without the involvement of TLR4 (Zanoni et al, 2007).
2009), and internalization of the entire CD14-MD2-TLR4 complex which instead promotes interferon production (Kagan et al., 2008; Zanoni et al., 2011). Subsequent work has suggested that a large number of innate cell functions could be controlled by protein complexes such as these termed “signalling organelles” which cooperate to alter intracellular calcium levels and regulate gene expression (Zanoni et al., 2011; Chiang et al., 2012; Kagan, 2012). While it is now widely accepted that calcineurin can dephosphorylate NFAT to facilitate transcription factor translocation to the nucleus in myeloid cells as well as in lymphocytes, two important questions remain unresolved (i) which PRRs are involved in mediating this process? and (ii) why are NFAT-driven expression programs highly specific to different cells and tissues?

Calcineurin–NFAT activity has now been reported in almost all subsets of myeloid cells (Muller & Rao, 2010; Fric et al., 2012). Most recently, an important role of NFAT1 was identified in microglia subjected to chronic LPS stimulation (Ma et al., 2015). Other investigators have dissected the translocation/turnover kinetics of the dephosphorylated nuclear fraction of NFAT3 and 4 in monocytes activated through TLR2/4 (Minematsu et al., 2011). In human mast cells, calcium mobilization is activated by triggering of TLR-2, which has been linked with NFAT-mediated transcriptional responses to Leishmania (Zaidi et al., 2006; Bhattacharjee et al., 2016). Calcineurin–NFAT signalling has also been shown to regulate mast cell activation (Walczak-Drzewiecka et al., 2008), survival (Ulleras et al., 2008) and cytokine expression (Monticelli et al., 2004; Klein et al., 2006). Furthermore, recognition of bacterial or fungal entry into host cells via cytoplasmic PRRs known as NOD-like receptors (NLRs) has also been shown to influence Calcineurin–NFAT activation (Tourneur et al., 2013; Vandewalle et al., 2014). The various PRR-dependent mechanisms of Calcineurin–NFAT activation identified in myeloid leucocytes are summarized in Fig 1.

Figure 1. PRR signal integration with the Calcineurin–NFAT pathway. Multiple different pattern recognition receptors (PRRs) have been reported to trigger Calcineurin–NFAT signalling upon ligand binding. In particular, TLRs and C-type lectin receptors (CLR) play critical roles in NFAT activation during innate immune responses. The observation that LPS exposure can stimulate NFAT-mediated IL-2 expression focused the majority of early research on the role of TLR4 (Granucci et al., 2001, 2003). The LPS co-receptor CD14 was later also reported to promote Calcineurin–NFAT activation via recruitment of Syk (Zanoni et al., 2009). In mast cells, heterodimers of TLR1-TLR2 recognize Pam₃CSK₄ and drive the recruitment of Fc-γ receptor which contains ITAM motifs (Jin et al., 2016). TLR9 can also promote NFAT activation upon exposure to Aspergillus fumigatus conidia in acidified endosomes, which results in recruitment of BTK, activation of PLCγ followed by increase in intracellular calcium concentration and NFAT translocation to the nucleus (Herbst et al., 2015). Alternatively, Syk recruitment, PLCγ activation and nuclear localization of NFAT can instead be induced by ligand binding of ITAM-containing CLRs such as Dectin-1 (Goodridge et al., 2007), macrophage-inducible Ca²⁺-dependent lectin (Mincle) (Yamasaki et al., 2008) and CLEC-2 (Mourao-Sa et al, 2012; Severin et al, 2011).
following leucocyte exposure to LPS (Zanoni et al, 2009) or the Dectin-1 ligand curdulan (Xu et al, 2009). While originally described in signalling downstream of the T-cell receptor, immune receptor tyrosine-based activation motifs (ITAM) are now also known to contribute to signal transduction in myeloid cells upon ligation of Dectin-1 and other C-type lectin receptors including CLEC-2 (Mourao-Sa et al, 2011; Severin et al, 2011).

In a signalling cascade comparable with that displayed by T cells, myeloid cells undergo dephosphorylation of ITAM motifs by Src kinases to create a binding site for spleen tyrosine kinase (Syk), which is the major integrator of PRR signals that induce intracellular calcium flux. These shared early signalling events suggest that Dectin-1 initiation of phagocytic activity in myeloid cells is the functional equivalent of immune synapse formation for T-cell stimulation (Goodridge et al, 2011). Syk subsequently cooperates with Src kinases to activate phospholipase γ (PLCγ), which represents the major point of convergence between PRR signalling and Calcineurin–NFAT activation by stimuli including Dectin-1 ligands (Xu et al, 2009). Evidence that PLCγ plays a major role in DC biology was first reported by Tassi et al, who observed that bone marrow-derived DCs (BMDCs) derived from PLCγ-deficient mice were unable to prime T-cell expression of IL-17 in response to Dectin-1 binding (Tassi et al, 2009). PLCγ also contributes to myeloid cell ontogeny due to activation by the key growth factors M-CSF and G-CSF in lineage progenitor cells (Barbosa et al, 2014).

An important signalling event in NFAT activation is ligand internalization and/or intense clustering of signalling molecules to lipid rafts. This process can be readily observed in response to molecules in particulate form such as β-glucan or zymosan (Goodridge et al, 2007), but has also been shown to occur following a LPS challenge. CD14-mediated internalization of LPS into signalling compartments activates Syk/PLCγ and promotes intracellular calcium flux in monocytes, macrophages and DCs (Zanoni et al, 2011; Vigano et al, 2015). We and others have also reported that signalling through PRRs can induce calcium flux and activate Calcineurin–NFAT signalling upon recognition of complex particulate antigens including whole bacteria and fungal conidia (Fric et al, 2014b). Indeed, while zymosan binding to Dectin-1 alone is sufficient to activate Calcineurin–NFAT signalling, Aspergillus fumigatus can also trigger TLR9 and Bruton’s tyrosine kinase (Btk) in addition to Dectin-1, leading to further upregulation of Calcineurin–NFAT activity (Strijbis et al, 2013; Herbst et al, 2015).

Calcineurin–NFAT control of bacterial and viral infections

Engagement of the Calcineurin–NFAT pathway has now been detected in myeloid cell responses to bacteria (Zanoni et al, 2009; Minematsu et al, 2011; Ranjan et al, 2014), parasitic infections (Kayama et al, 2009) and viruses (Miskin et al, 1998, 2000). In human DC, exposure to cyclosporine A reduces interferon (IFN)-α responses to Sendai virus (Tajima et al, 2003), while macrophages from NFAT4 knockout mice display reduced iNOS expression and attenuated bactericidal activity in a sepsis model, consistent with the ability of calcineurin inhibitors to block NFAT4 binding to the iNOS promoter (Ranjan et al, 2014). Given that the NFAT family can also cooperate with transcription factors such as NF-xB to modulate gene expression (Bronk et al, 2014), the Calcineurin–NFAT pathway is also likely to impact on antimicrobial immune responses via additional mechanisms that have yet to be identified. Indeed, previous studies of NFAT-dependent genes have relied mainly on global gene expression analyses in genetically engineered mouse models; hence, there are currently only limited data available on NFAT binding sites in myeloid cells. However, using an alternative chip-on-chip approach, Yu et al performed genome-wide mapping of potential target sites in human DCs to identify that NFAT1 can modulate expression of critical immunomodulatory chemokines and cytokines including IL-2, IL-12p40 and IL-23 (Yu et al, 2015). Similar strategies have also been used to identify cooperation between NFAT4 and transcription factor IRF7 in binding to IFN promoters in plasmacytoid DCs (Bao et al, 2016).

So far there are only limited data available from studies of human tissues and patient samples to support a role for NFAT in myeloid cell responses to major pathogens in vivo. However, signalling through TLR4 and NOD1, which impact on the Calcineurin–NFAT pathway, correlate with phagocytic activity in human renal transplant recipients who exhibit increased susceptibility to E. coli infection (Tournier et al, 2013). When combined with extensive data available from experimental models, these findings provide clear evidence that Calcineurin–NFAT signalling in myeloid cells is critically involved in host protection against infection. It is therefore highly likely that drug inhibition of Calcineurin–NFAT signalling in myeloid cells will disrupt numerous mechanisms of innate immune protection in treated human patients.

Calcineurin–NFAT-regulated genes in myeloid cells control fungal infection

The first NFAT-regulated genes to be identified included IL-2 expression induced by triggering of the T-cell receptor (Shaw et al, 1988). An important observation in this context was that stimulation of DCs with microbial compounds can also induce NFAT-dependent production of IL-2 (Grancu et al, 2001, 2003; Zanoni et al, 2009). While both NFAT- and MAPK-dependent effects of calcineurin inhibition on myeloid cell development were also identified, these were not initially linked with altered host susceptibility to infection (Miranda & Johnson, 2007; Fric et al, 2014a). Indeed, Calcineurin–NFAT-driven IL-2 expression can also be triggered by DC phagocytosis of sterile adjuvants including alum, SiO2 particles and monosodium urate crystals (Khamehni et al, 2017).

A role for calcium-NFAT signalling in innate immunity was initially identified in NK cells (Aramburu et al, 1995), and later reported in macrophages and DCs stimulated through Dectin-1 using either Candida albicans or zymosan, which modulated expression of key transcription factors (Egr2, Egr3) and pro-inflammatory mediators including Cox-2, IL-2, IL-10 and IL-12p70 (Goodridge et al, 2007; Xu et al, 2009). These data suggest that a wide range of effects can be mediated by calcium-NFAT signalling, especially via DC-derived IL-2 which has been identified as a key mediator of NK cell activation (Grancu et al, 2004, 2006) and regulatory T-cell (T-reg) maintenance (Guiducci et al, 2005). Indeed, recent work using an intranasal Aspergillus fumigatus infection model has demonstrated an important role for DC-derived IL-2 in mucosal immune responses in vivo (Zelante et al, 2015). In this report, conditional knockout of IL-2 expression in CD11c+ cells was sufficient to disrupt fungus
recognition, inhibit phagocytosis and impair Th17 responses to live conidia. Correlation of NFAT signalling with DC production of the antifungal protein pentraxin-3 has been also reported in a model of intravenous *A. fumigatus* infection (Zelante et al., 2017). Consequently, host deficiency in calcineurin signalling or lack of IL-2 expression in myeloid cells confers a significant increase in *A. fumigatus*-associated mortality in rodents (Zelante et al., 2015).

While IL-2 cytokine clearly has a major role to play in regulating cross talk between innate and adaptive immune cells (Malek & Castro, 2010; Yuan et al., 2015), other NFAT-regulated genes involved in host protection against infection include Cox-2, PGE-2 and various immunomodulatory cytokines (Zanoni et al., 2012). For example, tacrolimus treatment leads to a significant decrease in TNF expression by murine macrophages infected with *A. fumigatus* (Herbst et al., 2015). These data demonstrate that Calcineurin–NFAT signalling not only represents a central component of adaptive immunity but also plays important roles in innate responses. Consequently, the increased risk of bacterial and fungal infections observed in transplant patients treated with calcineurin inhibitors is likely due to defects in innate pathogen recognition in addition to suppression of T-cell responses.

Myeloid Calcineurin–NFAT function in immunopathology

Myeloid cells accumulate in host tissues and organs in a range of different pathologies including chronic inflammatory disorders, malignancies and autoimmune diseases (Nicholson et al., 2009). PRR signalling in myeloid cells has been the target of rheumatoid arthritis (RA) experimental therapy (Kim et al., 2014). Escolano et al. (2014) showed that calcineurin impairment in macrophages drives the development of an anti-inflammatory phenotype, with potential beneficial effects in some pathologies. Critical to many of these disease processes is antigen presentation by monocytes, macrophages and DCs, which stimulate T cells to produce pro-inflammatory cytokines and mediate potent effector functions. While myeloid cell induction of T-cell-mediated immunity is critical for eliminating pathogens from infected tissues, these responses can also damage host tissues if directed against self-antigens or not subsequently resolved. The range of clinical settings in which calcineurin inhibitor drugs might prove efficacious is therefore extremely broad, and the potential side effects likely include elevated risk of a wide variety of infections (Table 1).

Invasive fungal infections are a major cause of morbidity and mortality in immunocompromised patients (Pappas et al., 2010), and both experimental and clinical studies have demonstrated that the Calcineurin–NFAT pathway collaborates with NF-κB to coordinate macrophage TNF responses to *Aspergillus* (Herbst et al., 2015). Similarly, administration of calcineurin inhibitors is associated with defects in neutrophil/macrophage control of fungal germination and hyphal growth that likely increase pathology in transplant recipients (Imbert et al., 2016; Shah et al., 2016). The discovery that defective Calcineurin–NFAT signalling in myeloid cells confers increased susceptibility to *C. albicans* infection in mice (Greenblatt et al., 2010) has also led to the development of new models of infection in immunocompromised hosts that more closely resemble human clinical scenarios. In one such model of pulmonary aspergillosis, disruption of Calcineurin–NFAT signalling impaired fungal killing in alveolar macrophages, leading to sustained inflammatory responses in the lung, enhanced tissue destruction and increased rates of mortality (Herbst et al., 2013, 2015). An alternative model of invasive aspergillosis has also been used to demonstrate that NFAT-dependent expression of IL-2 in DCs is required for optimal Th17 responses in the lung, which decreases inflammatory pathology and reduces risk of mortality following infection (Zelante et al., 2015, 2017). In the peritoneal cavity, calcineurin inhibition during opportunistic *Saccharomyces cerevisiae* infection was reported to impair macrophage expression of CCR2 chemokines, impair neutrophil mobilization and delay pathogen clearance (Busch et al., 2016). The process of phagocytosis itself has also been identified as a driver of NFAT activation in macrophages, which may employ the TLR9-BTK-Calcineurin–NFAT (MyD88-independent) pathway as a mechanism of intracellular pathogen detection (Herbst et al., 2015). There is now substantial evidence that Calcineurin–NFAT signalling in myeloid cells affects the outcome of fungal infections in particular, although only limited data are available on how myeloid cell responses to fungi are altered in human patients receiving immunosuppressive therapy. Indeed, drug effects on non-immune lineages including epithelial cells that also express fungus-sensing PRRs may further modify patient outcomes. Indeed, a recent study demonstrated that upregulation of Dectin-1 in airway epithelial cells enhanced pro-inflammatory responses to *A. fumigatus*, increased neutrophil recruitment to the lungs and improved rates of *Aspergillus* clearance and host survival (Liu et al., 2015). However, it remains unconfirmed whether this Dectin-1-dependent ability of epithelial cells to protect against fungal infection is mediated by NFAT.

Autoimmune disorders as targets for immunosuppressive therapies

The discovery that drug inhibition of the Calcineurin–NFAT pathway potently suppresses T-cell responses led to a revolution in transplant medicine (Yeh & Markmann, 2013). While clinical usage of calcineurin inhibitors began in the 1980s, additional effects of these drugs on myeloid cell biology were not appreciated until almost 20 years later. Extensive efforts are now being made to better understand the full range of effects induced by calcineurin inhibitors and to identify new therapeutic applications for these drugs in a wide range of disease indications. While there is huge potential to improve therapy options for several major human disorders, these strategies will likely also confer increased infection risk due to disruption of myeloid cell responses to commensal organisms and pathogenic microbes.

In a previous study of calcineurin inhibitor effects on macrophage function in murine colitis, LPS-induced expression of IL-12p40, IL-12p70 and IL-23 was significantly reduced by treatment with tacrolimus or the calcineurin inhibitory peptide 11R-VIVIT (Elloumi et al., 2012). These data suggest that selective blockade of NFAT might be a promising therapeutic strategy in inflammatory bowel diseases. These findings are consistent with an earlier report that inactivation of calcineurin in myeloid cells can induce a form of LPS tolerance that inhibits inflammation (Jennings et al., 2009). Administration of calcineurin inhibitors may therefore also provide effective protection against LPS toxicity in disorders such as sepsis. Indeed, the range of pathologies in which calcineurin inhibition is
Table 1. Overview of experimental models demonstrating a role for NFAT in innate immunity.

<table>
<thead>
<tr>
<th>Model Disease</th>
<th>Cell type</th>
<th>Host</th>
<th>Pathogen Trigger</th>
<th>Study</th>
<th>Inhibitor Gene KO</th>
<th>Genes, Phenotype</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNGI</td>
<td>Invasive fungal infection</td>
<td>BMDM</td>
<td>Ms</td>
<td>C. albicans</td>
<td>In vitro</td>
<td>CsA VIVIT</td>
<td>Egr1, Egr3, Cox-2, IL-2, IL-10, IL-12p70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Al. MF</td>
<td>Ms</td>
<td>A. fumigatus</td>
<td>In vitro</td>
<td>FK506</td>
<td>Hyperinflammation Mortality</td>
<td>Herbst et al (2013)</td>
</tr>
<tr>
<td></td>
<td>DC</td>
<td>Ms</td>
<td>A. fumigatus</td>
<td>In vitro</td>
<td>CsA FK506 CnB</td>
<td>Mortality, IL-2, Th17 regulation</td>
<td>Zelante et al (2015)</td>
</tr>
<tr>
<td></td>
<td>Neut Hu</td>
<td>Zf</td>
<td>A. fumigatus</td>
<td>Ex vivo</td>
<td>CsA FK506</td>
<td>Af growth control</td>
<td>Imbert et al (2016)</td>
</tr>
<tr>
<td>YEAST</td>
<td>Opportunistic infection</td>
<td>MF</td>
<td>Ms</td>
<td>S. cereuisae</td>
<td>In vivo</td>
<td>CsA FK506</td>
<td>CCR2 chemokines, clearance of infection</td>
</tr>
<tr>
<td>BACTERIA/ PAMPS</td>
<td>Sepsis</td>
<td>MF</td>
<td>Ms</td>
<td>LPS</td>
<td>In vivo</td>
<td>CsA, VIVIT</td>
<td>INOS Bactericidal activity</td>
</tr>
<tr>
<td></td>
<td>Colitis IBD</td>
<td>MF</td>
<td>Ms</td>
<td>LPS</td>
<td>In vivo</td>
<td>FK506 VIVIT</td>
<td>IL-12p40 IL-12p70 IL-23</td>
</tr>
<tr>
<td></td>
<td>Acute pyelonephritis</td>
<td>Neut DC MF</td>
<td>Ms Hu</td>
<td>E. coli</td>
<td>In vivo</td>
<td>CsA VIVIT</td>
<td>Chemokines Susceptibility</td>
</tr>
<tr>
<td></td>
<td>Sendai virus</td>
<td>DC</td>
<td>Hu</td>
<td>Sendai virus</td>
<td>In vitro</td>
<td>CsA</td>
<td>IFN-α</td>
</tr>
<tr>
<td>STERILE PARTICLES</td>
<td>Vaccination</td>
<td>DC</td>
<td>Ms</td>
<td>Alum adjuvants</td>
<td>In vivo</td>
<td>CsA FK506</td>
<td>IL-2, CD4 proliferation, Humoral response</td>
</tr>
</tbody>
</table>

Species abbreviations: mouse (Ms), human (Hu), Candida (C), Aspergillus fumigatus (Af), trypanosoma (T). Cell types: bone marrow-derived macrophages (BMDMs), bone marrow-derived dendritic cells (BMDCs), neutrophils (Neut), alveolar macrophages (Al. MF), monocytes (Mo), cyclosporine A (CsA), tacrolimus (FK506), calcineurin (Cn).

thought to be potentially beneficial is now extensive, and the number of clinical studies initiated to test the efficacy of cyclosporine or tacrolimus has seen a corresponding increase in recent years (Fig 2A).

A potential new therapeutic application for calcineurin inhibitors drugs is the treatment of autoimmune disorders (Fig 2B and Table 2). Several studies have now reported that cyclosporine A can inhibit pathological IL-17 expression in patients with RA (Zhang et al, 2008). While some studies have failed to show any improvement of advanced RA with tacrolimus treatment (Schiff et al, 2010), recent clinical studies using tacrolimus as part of a multiple drug treatment in RA have reported very promising results (Takahashi et al, 2015; Hirai et al, 2017; Naniwa et al, 2017). However, since clinical studies often exclude patients who develop infections of unconfirmed origin, it will be important to determine whether treated individuals exhibit increased infection risk as reported elsewhere in immunosuppressed arthritis patients (Misra et al, 2014).

Both cyclosporine A and tacrolimus have proven effective for treatment of autoimmune membranous nephropathy, which is increasingly prevalent in older patients who already exhibit high risk of opportunistic infections (Yamaguchi et al, 2014; Alfaadhel & Cattratan, 2015). For other autoimmune pathologies including lupus nephritis, clinical studies are ongoing to demonstrate the efficacy of tacrolimus treatment which is currently used only on an “off-label” basis (Kraaij et al, 2016). Similarly, the chronic autoimmune
condition known as Sjogren’s syndrome is reportedly associated with abnormal activation of Th17 cells and has also been shown to respond well to combination therapy including cyclosporine A. Together, these data demonstrate that cyclosporine and tacrolimus can provide therapeutic benefit in human rheumatoid disorders and potentially other diseases in which myeloid cell function has been implicated.

Numerous in vitro studies and investigations in animal models have indicated that calcineurine inhibition can potently inhibit inflammatory cytokine expression without inducing severe side effects. While the range of potential drug effects on host susceptibility to infection appears extensive, additional effects of calcineurin inhibitors on myeloid cell activity in autoimmune disease are also likely to be identified in future. Indeed, the potent immunosuppressive properties of myeloid cells have already been confirmed in studies of tolerogenic DCs in RA (Hilkens et al., 2010; Hilkens & Isaacs, 2013) and via development of novel tissue-specific DC-based immunotherapies (Mbongue et al., 2014). Further investigations will therefore be required to better understand the role of Calcineurin–NFAT signalling in control of myeloid cell function in human patients, to target this pathway more effectively in future and achieve greater therapeutic benefit for patients with a range of increasingly common pathologies.

Concluding remarks

In the current review, we have summarized recent advances in understanding the role played by calcineurin/NFAT-regulated genes in the control of myeloid leukocyte responses to infection. Due to decades of clinical use in transplant settings, there is little concern...
regarding the safety of calcineurin inhibitor drug use in human patients. While most of the clinical studies discussed in this review carefully assessed infection risk associated with immunosuppressive therapies, the contribution of myeloid cell dysfunction in treated patients has been largely overlooked. To our knowledge, no previous study has reported a link between immunosuppressive therapy and dysregulation of myeloid immunity. However, data from infection models and studies in genetically engineered animals clearly indicate a major role for Calcineurin–NFAT signalling in myeloid cell protection against pathogens.

Acknowledgements

We wish to thank Dr. Neil McCarthy of Insight Editing London for critical review of the manuscript. Authors are supported by European Social Fund and European Regional Development Fund—Project MAGNET (No. CZ.02.1.01/0.0/0.0/15_003/0000492).

Conflict of interest

The authors declare that they have no conflict of interest.

References

Barbosa CM, Bincoletto C, Barros CC, Ferreira AT, Paredes-Gamero E et al (2015) Project MAGNET (No. CZ.02.1.01/0.0/0.0/15_003/0000492).

Conflict of interest

The authors declare that they have no conflict of interest.

References

License: This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.